Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 205 results
1.

The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
bioRxiv, 14 Mar 2024 DOI: 10.1101/2024.03.14.585005 Link to full text
Abstract: Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
2.

Optogenetic Regulation of EphA1 RTK Activation and Signaling.

blue CRY2olig HEK293T Neuro-2a Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 20 Feb 2024 DOI: 10.1101/2024.02.06.579139 Link to full text
Abstract: Eph receptors are ubiquitous class of transmembrane receptors that mediate cell-cell communication, proliferation, differentiation, and migration. EphA1 receptors specifically play an important role in angiogenesis, fetal development, and cancer progression; however, studies of this receptor can be challenging as its ligand, ephrinA1, binds and activates several EphA receptors simultaneously. Optogenetic strategies could be applied to circumvent this requirement for ligand activation and enable selective activation of the EphA1 subtype. In this work, we designed and tested several iterations of an optogenetic EphA1 - Cryptochrome 2 (Cry2) fusion, investigating their capacity to mimic EphA1-dependent signaling in response to light activation. We then characterized the key cell signaling target of MAPK phosphorylation activated in response to light stimulation. The optogenetic regulation of Eph receptor RTK signaling without the need for external stimulus promises to be an effective means of controlling individual Eph receptor-mediated activities and creates a path forward for the identification of new Eph-dependent functions.
3.

A temperature-inducible protein module for control of mammalian cell fate.

blue BcLOV4 HEK293T Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell death
bioRxiv, 19 Feb 2024 DOI: 10.1101/2024.02.19.581019 Link to full text
Abstract: Inducible protein switches are used throughout the biosciences to allow on-demand control of proteins in response to chemical or optical inputs. However, these inducers either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. Using custom devices for rapid and high-throughput temperature control during live-cell microscopy, we find that the original Melt variant fully switches states between 28-32°C, and state changes can be observed within minutes of temperature changes. Melt was highly modular, permitting thermal control over diverse intracellular processes including signaling, proteolysis, and nuclear shuttling through straightforward end-to-end fusions with no further engineering. Melt was also highly tunable, giving rise to a library of Melt variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt could thermally regulate important cell decisions over this range, including cytoskeletal rearrangement and apoptosis. Thus Melt represents a versatile thermogenetic module that provides straightforward, temperature-based, real-time control of mammalian cells with broad potential for biotechnology and biomedicine.
4.

Epithelial folding through local degradation of an elastic basement membrane plate.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
bioRxiv, 8 Feb 2024 DOI: 10.1101/2024.02.06.579060 Link to full text
Abstract: Epithelia are polarised layers of cells that line the outer and inner surfaces of organs. At the basal side, the epithelial cell layer is supported by a basement membrane, which is a thin polymeric layer of self-assembled extracellular matrix (ECM) that tightly adheres to the basal cell surface. Proper shaping of epithelial layers is an important prerequisite for the development of healthy organs during the morphogenesis of an organism. Experimental evidence indicates that local degradation of the basement membrane drives epithelial folding. Here, we present a coarse-grained plate theory model of the basement membrane that assumes force balance between i) cell-transduced active forces and ii) deformation-induced elastic forces. We verify key assumptions of this model through experiments in the Drosophila wing disc epithelium and demonstrate that the model can explain the emergence of outward epithelial folds upon local plate degradation. Our model accounts for local degradation of the basement membrane as a mechanism for the generation of epithelial folds in the absence of epithelial growth.
5.

Optogenetic generation of leader cells reveals a force-velocity relation for collective cell migration.

blue CRY2/CIB1 MDCK Control of cytoskeleton / cell motility / cell shape Developmental processes
bioRxiv, 23 Jan 2024 DOI: 10.1101/2024.01.23.576733 Link to full text
Abstract: The front of migratory cellular clusters during development, wound healing and cancer invasion is typically populated with highly protrusive cells that are called leader cells. Leader cells are thought to physically pull and direct their cohort of followers, but how leaders and followers are mechanically organized to migrate collectively remains controversial. One possibility is that the autonomous local action of a leader cell is sufficient to drive migration of the group. Yet another possibility is that a global mechanical organization is required for the group to move cohesively. Here we show that the effectiveness of leader-follower organization is proportional to the asymmetry of traction and tension within the cellular cluster. By combining hydrogel micropatterning and optogenetic activation of Rac1, we locally generate highly protrusive leaders at the edge of minimal cell groups. We find that the induced leader can robustly drag one follower but is generally unable to direct larger groups. By measuring traction forces and tension propagation in groups of increasing size, we establish a quantitative relationship between group velocity and the asymmetry of the traction and tension profiles. We propose a model of the motile cluster as an active polar fluid that explains this force-velocity relationship in terms of asymmetries in the distribution of active tractions. Our results challenge the notion of autonomous leader cells by showing that collective cell migration requires a global mechanical organization within the cluster.
6.

A mechanical wave travels along a genetic guide to drive the formation of an epithelial furrow during Drosophila gastrulation.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
Dev Cell, 15 Jan 2024 DOI: 10.1016/j.devcel.2023.12.016 Link to full text
Abstract: Epithelial furrowing is a fundamental morphogenetic process during gastrulation, neurulation, and body shaping. A furrow often results from a fold that propagates along a line. How fold formation and propagation are controlled and driven is poorly understood. To shed light on this, we study the formation of the cephalic furrow, a fold that runs along the embryo dorsal-ventral axis during Drosophila gastrulation and the developmental role of which is still unknown. We provide evidence of its function and show that epithelial furrowing is initiated by a group of cells. This cellular cluster works as a pacemaker, triggering a bidirectional morphogenetic wave powered by actomyosin contractions and sustained by de novo medial apex-to-apex cell adhesion. The pacemaker's Cartesian position is under the crossed control of the anterior-posterior and dorsal-ventral gene patterning systems. Thus, furrow formation is driven by a mechanical trigger wave that travels under the control of a multidimensional genetic guide.
7.

Optogenetic demonstration of the involvement of SMA-negative mural cells in the regulation of cerebral blood flow.

blue bPAC (BlaC) mouse in vivo Control of cytoskeleton / cell motility / cell shape
Front Physiol, 22 Dec 2023 DOI: 10.3389/fphys.2023.1322250 Link to full text
Abstract: Mural cells are critical components of the cerebral vasculature. They are categorized into three primary subsets: arteriole smooth muscle cells (aSMCs), pericytes (PCs) and venule smooth muscle cells (vSMCs). It is well known that aSMCs can directly regulate cerebral blood flow (CBF) with their own contraction and dilation mechanisms. On the other hand, the direct involvement of PCs or vSMCs in CBF regulation is controversial. This ambiguity is largely due to the lack of specifically manipulable tools to isolate their function. To address this issue, we employed a set-subtraction approach by using a combination of tTA-mediated gene induction and Cre-mediated gene excision. We developed transgenic mice expressing optical actuators, channelrhodopsin-2 (ChR2) and photoactivated adenylyl cyclase (PAC) in smooth muscle actin (SMA)-negative mural cells that lack the machinery for SMA-mediated vasoregulation. Using these mouse models, we assessed CBF alterations in response to optical stimulation using laser Doppler techniques. Our results showed that optical stimulation induced notable CBF changes in both models. This study provides evidence for the potential regulatory role of PCs and vSMCs in cerebral hemodynamics and introduces powerful tools to specifically manipulate these cell types in vascular neurobiology.
8.

Regulatable assembly of synthetic microtubule architectures using engineered MAP-IDR condensates.

blue CRY2/CRY2 PixD/PixE NIH/3T3 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 6 Dec 2023 DOI: 10.1101/2023.03.14.532644 Link to full text
Abstract: Microtubules filaments are assembled into higher-order structures and machines critical for cellular processes using microtubule-associated proteins (MAPs). However, the design of synthetic MAPs that direct the formation of new structures in cells is challenging, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop synthetic MAP-IDR condensates (synMAPs) that provide tunable and regulatable assembly of higher-order microtubule structures in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity can be synthetically rewired by interaction with condensate-forming IDR sequences. This combination allows synMAPs to self-organize multivalent structures that bind and bridge microtubules into synthetic architectures. Regulating the connection between the microtubule-binding and condensate-forming components allows synMAPs to act as nodes in more complex cytoskeletal circuits in which the formation and dynamics of the microtubule structure can be controlled by small molecules or cell-signaling inputs. By systematically testing a panel of synMAP circuit designs, we define a two-level control scheme for dynamic assembly of microtubule architectures at the nanoscale (via microtubule-binding) and microscale (via condensate formation). synMAPs provide a compact and rationally engineerable starting point for the design of more complex microtubule architectures and cellular machines.
9.

Turn-On Protein Switches for Controlling Actin Binding in Cells.

blue AsLOV2 HEK293T HeLa MDCK Control of cytoskeleton / cell motility / cell shape
bioRxiv, 26 Oct 2023 DOI: 10.1101/2023.10.26.561921 Link to full text
Abstract: Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP’s influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into new structures to control cell and tissue shape and behavior.
10.

OptoProfilin: A Single Component Biosensor of Applied Cellular Stress.

blue CRY2/CRY2 HEK293T HeLa Neuro-2a NIH/3T3 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 4 Oct 2023 DOI: 10.1101/2023.10.04.560945 Link to full text
Abstract: The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as cofilin-actin rods and stress granules formed in response to energetic and oxidative stress are closely linked to neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and ALS. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, neurodegenerative disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin (‘OptoProfilin’) can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.
11.

Light-induced trapping of endogenous proteins reveals spatiotemporal roles of microtubule and kinesin-1 in dendrite patterning of Drosophila sensory neurons.

blue CRY2/CIB1 CRY2/CRY2 CRY2olig Magnets D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Oct 2023 DOI: 10.1101/2023.09.30.560303 Link to full text
Abstract: Animal development involves numerous molecular events, whose spatiotemporal properties largely determine the biological outcomes. Conventional methods for studying gene function lack the necessary spatiotemporal resolution for precise dissection of developmental mechanisms. Optogenetic approaches are powerful alternatives, but most existing tools rely on exogenous designer proteins that produce narrow outputs and cannot be applied to diverse or endogenous proteins. To address this limitation, we developed OptoTrap, a light-inducible protein trapping system that allows manipulation of endogenous proteins tagged with GFP or split GFP. This system turns on fast and is reversible in minutes or hours. We generated OptoTrap variants optimized for neurons and epithelial cells and demonstrate effective trapping of endogenous proteins of diverse sizes, subcellular locations, and functions. Furthermore, OptoTrap allowed us to instantly disrupt microtubules and inhibit the kinesin-1 motor in specific dendritic branches of Drosophila sensory neurons. Using OptoTrap, we obtained direct evidence that microtubules support the growth of highly dynamic dendrites. Similarly, targeted manipulation of Kinesin heavy chain revealed differential spatiotemporal requirements of kinesin-1 in the patterning of low- and high-order dendritic branches, suggesting that different cargos are needed for the growth of these branches. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds great promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
12.

Local negative feedback of Rac activity at the leading edge underlies a pilot pseudopod-like program for amoeboid cell guidance.

blue iLID HL-60 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
PLoS Biol, 25 Sep 2023 DOI: 10.1371/journal.pbio.3002307 Link to full text
Abstract: To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to "lock" onto a particular direction, limiting the ability of cells to reorient. We use spatially defined optogenetic control of a leading edge organizer (PI3K) to probe how neutrophil-like HL-60 cells balance "decisiveness" needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibition process that destabilizes the leading edge to promote exploration. We show that this local inhibition enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
13.

Photoswitchable binders enable temporal dissection of endogenous protein function.

cyan pdDronpa1 HeLa U-87 MG Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 14 Sep 2023 DOI: 10.1101/2023.09.14.557687 Link to full text
Abstract: General methods for spatiotemporal control of specific endogenous proteins would be broadly useful for probing protein function in living cells. Synthetic protein binders that bind and inhibit endogenous protein targets can be obtained from nanobodies, designed ankyrin repeat proteins (DARPins), and other small protein scaffolds, but generalizable methods to control their binding activity are lacking. Here, we report robust single-chain photoswitchable DARPins (psDARPins) for bidirectional optical control of endogenous proteins. We created topological variants of the DARPin scaffold by computer-aided design so fusion of photodissociable dimeric Dronpa (pdDronpa) results in occlusion of target binding at baseline. Cyan light induces pdDronpa dissociation to expose the binding surface (paratope), while violet light restores pdDronpa dimerization and paratope caging. Since the DARPin redesign leaves the paratope intact, the approach was easily applied to existing DARPins for GFP, ERK, and Ras, as demonstrated by relocalizing GFP-family proteins and inhibiting endogenous ERK and Ras with optical control. Finally, a Ras-targeted psDARPin was used to determine that, following EGF-activation of EGFR, Ras is required for sustained EGFR to ERK signaling. In summary, psDARPins provide a generalizable strategy for precise spatiotemporal dissection of endogenous protein function.
14.

Control of cell retraction and protrusion with a single protein.

blue iLID hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 8 Sep 2023 DOI: 10.1101/2023.09.07.556666 Link to full text
Abstract: The ability of a single protein to trigger different functions is an assumed key feature of cell signaling, yet there are very few examples demonstrating it. Here, using an optogenetic tool to control membrane localization of RhoA nucleotide exchange factors (GEFs), we present a case where the same protein can trigger both protrusion and retraction when recruited to the plasma membrane, polarizing the cell in two opposite directions. We show that the basal concentration of the GEF prior to activation predicts the resulting phenotype. A low concentration leads to retraction, whereas a high concentration triggers protrusion. This unexpected protruding behavior arises from the simultaneous activation of Cdc42 by the GEF and inhibition of RhoA by the PH domain of the GEF at high concentrations. We propose a minimal model that recapitulates the phenotypic switch, and we use its predictions to control the two phenotypes within selected cells by adjusting the frequency of light pulses. Our work exemplifies a unique case of control of antagonist phenotypes by a single protein that switches its function based on its concentration or dynamics of activity. It raises numerous open questions about the link between signaling protein and function, particularly in contexts where proteins are highly overexpressed, as often observed in cancer.
15.

Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.

blue bPAC (BlaC) OaPAC zebrafish in vivo Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 17 Aug 2023 DOI: 10.7554/elife.83975 Link to full text
Abstract: Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.
16.

Opto-RhoGEFs, an optimized optogenetic toolbox to reversibly control Rho GTPase activity on a global to subcellular scale, enabling precise control over vascular endothelial barrier strength.

blue iLID Magnets hBE HeLa Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Elife, 14 Jul 2023 DOI: 10.7554/elife.84364 Link to full text
Abstract: The inner layer of blood vessels consists of endothelial cells, which form the physical barrier between blood and tissue. This vascular barrier is tightly regulated and is defined by cell-cell contacts through adherens and tight junctions. To investigate the signaling that regulates vascular barrier strength, we focused on Rho GTPases, regulators of the actin cytoskeleton and known to control junction integrity. To manipulate Rho GTPase signaling in a temporal and spatial manner we applied optogenetics. Guanine-nucleotide exchange factor (GEF) domains from ITSN1, TIAM1, and p63RhoGEF, activating Cdc42, Rac, and Rho, respectively, were integrated into the optogenetic recruitment tool improved light-induced dimer (iLID). This tool allows for Rho GTPase activation at the subcellular level in a reversible and non-invasive manner by recruiting a GEF to a specific area at the plasma membrane, The membrane tag of iLID was optimized and a HaloTag was applied to gain more flexibility for multiplex imaging. The resulting optogenetically recruitable RhoGEFs (Opto-RhoGEFs) were tested in an endothelial cell monolayer and demonstrated precise temporal control of vascular barrier strength by a cell-cell overlap-dependent, VE-cadherin-independent, mechanism. Furthermore, Opto-RhoGEFs enabled precise optogenetic control in endothelial cells over morphological features such as cell size, cell roundness, local extension, and cell contraction. In conclusion, we have optimized and applied the optogenetic iLID GEF recruitment tool, that is Opto-RhoGEFs, to study the role of Rho GTPases in the vascular barrier of the endothelium and found that membrane protrusions at the junction region can rapidly increase barrier integrity independent of VE-cadherin.
17.

Mechanosensitive dynamics of lysosomes along microtubules regulate leader cell emergence in collective cell migration.

blue CRY2/CIB1 MDCK Control of cytoskeleton / cell motility / cell shape
bioRxiv, 4 Jul 2023 DOI: 10.1101/2022.08.03.502740 Link to full text
Abstract: Collective cell migration during embryonic development, wound healing, and cancer metastasis entails the emergence of leader cells at the migration front. These cells with conspicuous lamellipodial structures provide directional guidance to the collective. Despite their physiological relevance, the mechanisms underlying the emergence of leader cells remain elusive. Here we report that in diverse model systems for wound healing, including cultured epithelial monolayer, Drosophila embryo, and mouse embryonic skin, leader cells display a peripheral accumulation of lysosomes. This accumulation appears essential for leader cell emergence, involves lysosomal movement along microtubules, and depends on the actomyosin contractility-generated cellular forces. Peripheral lysosomes associate with inactive Rac1 molecules to remove them from the leading periphery, which increases local Rac1-activity, triggering actin polymerization and promoting lamellipodium formation. Taken together, we demonstrate that beyond their catabolic role, lysosomes act as the intracellular platform that links mechanical and biochemical signals to control the emergence of leader cells.
18.

Optogenetic dissection of RET signaling reveals robust activation of ERK and enhanced filopodia-like protrusions of regenerating axons.

blue CRY2/CRY2 primary mouse hippocampal neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Mol Brain, 4 Jul 2023 DOI: 10.1186/s13041-023-01046-6 Link to full text
Abstract: RET (REarranged during Transfection) is a receptor tyrosine kinase that transduces various external stimuli into biological functions, such as survival and differentiation, in neurons. In the current study, we developed an optogenetic tool for modulating RET signaling, termed optoRET, combining the cytosolic region of human RET with a blue-light-inducible homo-oligomerizing protein. By varying the duration of photoactivation, we were able to dynamically modulate RET signaling. Activation of optoRET recruited Grb2 (growth factor receptor-bound protein 2) and stimulated AKT and ERK (extracellular signal-regulated kinase) in cultured neurons, evoking robust and efficient ERK activation. By locally activating the distal part of the neuron, we were able to retrogradely transduce the AKT and ERK signal to the soma and trigger formation of filopodia-like F-actin structures at stimulated regions through Cdc42 (cell division control 42) activation. Importantly, we successfully modulated RET signaling in dopaminergic neurons of the substantia nigra in the mouse brain. Collectively, optoRET has the potential to be developed as a future therapeutic intervention, modulating RET downstream signaling with light.
19.

Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape Developmental processes
Development, 4 Jul 2023 DOI: 10.1242/dev.201386 Link to full text
Abstract: In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging, and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition, and TGF-β signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish an hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
20.

Concept and considerations of a medical device: the active noise cancelling incubator.

blue CRY2/CIB1 iLID TULIP D. discoideum HL-60 MCF10A RAW264.7 Control of cytoskeleton / cell motility / cell shape
Front Pediatr, 3 Jul 2023 DOI: 10.3389/fcell.2023.1195806 Link to full text
Abstract: An increasingly 24/7 connected and urbanised world has created a silent pandemic of noise-induced hearing loss. Ensuring survival to children born (extremely) preterm is crucial. The incubator is a closed medical device, modifying the internal climate, and thus providing an environment for the child, as safe, warm, and comfortable as possible. While sound outside the incubator is managed and has decreased over the years, managing the noise inside the incubator is still a challenge.
21.

A cytokinetic ring-driven cell rotation achieves Hertwig’s rule in early development.

blue TULIP C. elegans in vivo Control of cytoskeleton / cell motility / cell shape Cell cycle control
bioRxiv, 27 Jun 2023 DOI: 10.1101/2023.06.23.546115 Link to full text
Abstract: Cells tend to divide along the direction in which they are longest, as famously stated by Oscar Hertwig in 1884 in his long axis rule. The orientation of the mitotic spindle determines the cell division axis, and the long axis rule is usually ensured by forces stemming from microtubules. Pulling on the spindle from the cell cortex can give rise to unstable behaviors, and we here set out to understand how the long axis rule is realized in early embryonic divisions where cortical pulling forces are prevalent. We focus on early C. elegans development, where we compressed embryos to reveal that cortical pulling forces favor an alignment of the spindle with the short axis of the cell. Strikingly, we find that this misalignment is corrected by an actomyosin-based mechanism that rotates the entire cell, including the mitotic spindle. We uncover that myosin-driven contractility in the cytokinetic ring generates inward forces that align it with the short axis, and thereby the spindle with the long axis. A theoretical model together with experiments using slightly compressed mouse zygotes suggest that a constricting cytokinetic ring can ensure the long axis rule in cells that are free to rotate inside a confining structure, thereby generalizing the underlying principle.
22.

Cell protrusions and contractions generate long-range membrane tension propagation.

blue iLID HL-60 Control of cytoskeleton / cell motility / cell shape
Cell, 12 Jun 2023 DOI: 10.1016/j.cell.2023.05.014 Link to full text
Abstract: Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
23.

OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range.

green CcaS/CcaR E. coli Control of cytoskeleton / cell motility / cell shape Transgene expression
ACS Synth Biol, 22 May 2023 DOI: 10.1021/acssynbio.3c00035 Link to full text
Abstract: The ability to modulate gene expression is crucial for studying gene function and programming cell behaviors. Combining the reliability of CRISPRi and the precision of optogenetics, the optoCRISPRi technique is emerging as an advanced tool for live-cell gene regulation. Since previous versions of optoCRISPRi often exhibit no more than a 10-fold dynamic range due to the leakage activity, they are not suitable for targets that are sensitive to such leakage or critical for cell growth. Here, we describe a green-light-activated CRISPRi system with a high dynamic range (40 fold) and the flexibility of changing targets in Escherichia coli. Our optoCRISPRi-HD system can efficiently repress essential genes, nonessential genes, or inhibit the initiation of DNA replication. Providing a regulative system with high resolution over space-time and extensive targets, our study would facilitate further research involving complex gene networks, metabolic flux redirection, or bioprinting.
24.

Actuation of single downstream nodes in growth factor network steers immune cell migration.

blue CRY2/CIB1 iLID D. discoideum HL-60 RAW264.7 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Dev Cell, 22 May 2023 DOI: 10.1016/j.devcel.2023.04.019 Link to full text
Abstract: Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
25.

Mechanosensitive stem cell fate choice is instructed by dynamic fluctuations in activation of Rho GTPases.

blue CRY2/CRY2 rat hippocampal NSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell differentiation
Proc Natl Acad Sci U S A, 22 May 2023 DOI: 10.1073/pnas.2219854120 Link to full text
Abstract: During the intricate process by which cells give rise to tissues, embryonic and adult stem cells are exposed to diverse mechanical signals from the extracellular matrix (ECM) that influence their fate. Cells can sense these cues in part through dynamic generation of protrusions, modulated and controlled by cyclic activation of Rho GTPases. However, it remains unclear how extracellular mechanical signals regulate Rho GTPase activation dynamics and how such rapid, transient activation dynamics are integrated to yield long-term, irreversible cell fate decisions. Here, we report that ECM stiffness cues alter not only the magnitude but also the temporal frequency of RhoA and Cdc42 activation in adult neural stem cells (NSCs). Using optogenetics to control the frequency of RhoA and Cdc42 activation, we further demonstrate that these dynamics are functionally significant, where high- vs. low-frequency activation of RhoA and Cdc42 drives astrocytic vs. neuronal differentiation, respectively. In addition, high-frequency Rho GTPase activation induces sustained phosphorylation of the TGFβ pathway effector SMAD1, which in turn drives the astrocytic differentiation. By contrast, under low-frequency Rho GTPase stimulation, cells fail to accumulate SMAD1 phosphorylation and instead undergo neurogenesis. Our findings reveal the temporal patterning of Rho GTPase signaling and the resulting accumulation of an SMAD1 signal as a critical mechanism through which ECM stiffness cues regulate NSC fate.
Submit a new publication to our database